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The Lowest Energy Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Structures:
Application to MePTCDI and PTCDA Crystals
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We consider the exciton states in quasi-one-dimensional organic crystals with strong orbital overlap be-
tween neighboring molecules. In such crystals, the energy difference between the lowest Frenkel exciton and
the nearest-neighbor charge-transfer excitons becomes small and their strong mixing determines the nature of
the lowest energy states. We discuss these effects for crystalline MePTCDI (N-N′-dimethylperylene-3,4,9,10-
dicarboximide) and PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride). To model the exciton states we use
a Hamiltonian which includes the mixing of Frenkel excitons with several vibronic levels and charge-transfer
excitons. With appropriate fitting parameters, we demonstrate that this model can explain the main features of
the low temperature absorption spectra. Polarized absorption spectra of MePTCDI show different polarization
ratios for the various absorption peaks. This polarization behavior is discussed as a qualitative proof for the
varying contribution of the charge-transfer excitons, which have a transition dipole direction different from that
of the Frenkel excitons.

I. INTRODUCTION

It is well known that neutral electronic excitations, known
as excitons, play a fundamental role in the determination of
linear and nonlinear optical properties of dielectric solids [1].
This type of excitation corresponds to a bound state of an elec-
tron and a hole. It can be created by light or can appear as a
result of relaxation processes of high energy excited states,
e.g., states of free electrons and holes generated by electric
pumping. Two models are usually employed to classify exci-
tons - the small radius Frenkel exciton model, and the large
radius Wannier-Mott exciton model.

The Wannier-Mott exciton model considers the coulombic
interaction between two free particles and is based on the ef-
fective mass approximation for electrons and holes in the pe-
riodic crystal potential. Therefore, the internal structure of
Wannier-Mott excitons can be represented by hydrogen-like
functions. The mean electron-hole distance for this type of
excitons should be large in comparison with the lattice con-
stant. This condition can only be fulfilled if at least one of
the charge carriers has a sufficiently small effective mass, i.e.,
if its bandwidth is large compared to the Coulomb attraction
between electron and hole in the exciton. Such a situation is
typical for inorganic semiconductors (Si, Ge, GaAs etc.) due
to the large overlap of the atomic orbitals and the high dielec-
tric constants.

On the other hand, the Frenkel exciton model considers a
neutral excited state in which the electron and hole are placed
on the same molecule. Intermolecular interactions give rise to
a finite transfer integral for the transfer of the electronic exci-
tation from one molecule to another. As a result, the Frenkel
excitons are represented by one-particle excitation waves co-
herently propagating through the crystal. The Frenkel exciton
model is applicable if the binding energy (i.e. the energy dif-
ference between a crystal with a free electron and hole with

respect to the crystal with a Frenkel exciton) is large com-
pared to both free carrier bandwidths.

The charge-transfer exciton (CTE) occupies an intermedi-
ate place in the classification of excitons based on their in-
ternal structure. A localized CTE configuration consists of a
pair of charge carriers localized at different molecules. Such
localization is supported in organic crystals, because, in con-
trast to inorganic semiconductors the binding energy of the
lowest CTE is large compared to the valence and conduction
bandwidth. The localization can also be stabilized due to a
strong tendency of CTE to undergo self trapping [2]. In gen-
eral, a CTE is a linear combination of such localized CTE
configurations.

Charge-transfer excitons are currently considered as an im-
portant intermediate state in the creation of free carriers by
light absorption [3]. Due to the large static dipole mo-
ment of the underlying localized CTE configurations (up to
10 − 25 Debye already for nearest-neighbor distances), CTE
can cause large second order nonlinear polarizabilities χ(2)

(see, for example, [4]) and strong electro-absorption signals
[5, 6].

As soon as the energetic difference between a CTE con-
figuration and a Frenkel exciton becomes small, both excitons
can interact and form new mixed states. These mixed Frenkel-
charge-transfer excitons show properties of both types of con-
tributing states: The Frenkel exciton provides a large oscilla-
tor strength, whereas the CTE causes a high sensitivity to ex-
ternal electric fields. The first model for the mixing of Frenkel
and CT excitons was presented by Merrifield [7]. As long as
only CTE with small electron-hole separation are included,
such a model has still to be considered as a small radius exci-
ton model.

For organic polyacene crystals, this concept was success-
fully used to describe the low energy excitons observed in
electro-absorption experiments [8]. In anthracene, e.g., the
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electronically and vibrationally lowest excited state is still an
almost pure Frenkel exciton, whereas mixing between Frenkel
and CT excitons occurs in the region of its vibronic replicas.
Furthermore, the CTE binding energy in anthracene is much
larger than the carrier bandwidth so that the restriction to
Frenkel and nearest-neighbor CT excitons is self-consistently
justified. In this way, many qualitative and quantitative fea-
tures of the low energy excited states in crystals of the an-
thracene type are already well understood in terms of such a
small radius exciton model.

Nevertheless, there is an increasing interest in such exciton
models, since a permanently rising number of new organic
crystals become important for thin film device applications.
From this point of view, special attention is deserved by so-
called quasi-one-dimensional molecular crystals, in which the
distance between molecules in one direction is much smaller
than in the others. Usually, such structures are formed by
planar aromatic molecules which arrange in one-dimensional
face-to-face stacks with strong intermolecular overlap of the
π-orbitals. A number of perylene derivatives are prominent
examples for 1D crystals. They are not only interesting for
photo-electric device applications like solar cells [9] or xerog-
raphy [10] but they are extensively studied due to their ca-
pability of ordered growth on several substrates (reviewed in
[11]).

In this paper, we will study crystals of MePTCDI (N-
N′-dimethylperylene-3,4,9,10-dicarboximide) and PTCDA
(3,4,9,10-perylenetetracarboxylic dianhydride). The distance
between the molecular planes within the one-dimensional
stacks (3.40 Å for MePTCDI [12] and 3.37 Å for PTCDA, de-
rived from [13–16]) is small in comparison with other lattice
constants and also small in comparison with the size of the
molecules. This causes strong interactions of the π-electron
systems within the stacks, but a very weak interaction in the
other directions. Due to these strong interactions in the stack
it is not obvious which exciton models are best suited.

We can expect that in such crystals the qualitative differ-
ence between Frenkel and CT excitations becomes smaller,
their energies approach each other and their strong mixing de-
termines the nature of the lowest energy states. For a qualita-
tive illustration of this physical picture, we present in Fig. 1
the results of quantum chemical calculations for the simplest
model system: a dimer of two ethylene molecules. The posi-
tion of the second molecule with respect to the first is given by
a translation of distance r along the symmetry axis perpendic-
ular to the molecular plane (see inset in Fig. 1). In Fig. 1, the
energy of the four lowest excited states is given as a function
of the distance r.

At large distances r, the situation represents the conditions
in anthracene-like crystals: The lowest states of the dimer are
two Frenkel states and there are two CT states well separated
at higher energies. As could be expected, for large distances
the energy of the CT states as a function of r follows the rela-
tion: E = I −A− e2/r, where I is the ionization energy and
A is the electron affinity of the monomer. It is clear that for
such large distances the intermolecular overlap between the π-
orbitals is small and therefore, the transition dipole moment
from the ground to the CT state should also be small. With

FIG. 1: Calculated energy of the four lowest excited states in a
model dimer of two ethylene molecules (geometry see inset). r is
the distance between the molecular planes. For r ≥ 10 Å, there are
two degenerate Frenkel excitons (corresponding to molecular exci-
tations) and two degenerate charge-transfer excitons. Calculations
with ZINDO/S module of HyperChem.

decreasing the distance r, the energy of the CT states will
decrease and they will inevitably become resonant with the
Frenkel states. In combination with increasing orbital overlap
and increasing charge-transfer integrals, this leads to a repul-
sion of levels and strong mixing of all states with the same
symmetry. Furthermore, even the pure CT states can attain
a considerable transition dipole moment due the finite orbital
overlap. In the model calculation, the strong mixing occurs
at distances below 3.5 Å, which is a typical distance between
molecular planes in quasi-1D crystals.

In the present paper, we assume that such a situation oc-
curs in MePTCDI and similar crystals. We discuss this
phenomenon in the framework of a one-dimensional model
Hamiltonian which includes Frenkel and nearest-neighbor CT
excitons. This model is capable of describing the main fea-
tures of the absorption spectrum within the conditions nec-
essary for a small radius exciton model. In extension to the
model for PTCDA-dimers developed by Hennessy et al. [17],
we consider an infinite chain and explicitly analyze the in-
trinsic transition dipole moment of the CTE. In connection
with polarized absorption spectra of MePTCDI, this analysis
is used as a direct qualitative proof for the contribution of CT
excitons. This analysis is the extension of our preliminary
results for the Frenkel-CT-mixing in MePTCDI presented in
[18].

The paper is organized as follows: In section 2, we will first
review the available information about excitons in MePTCDI
and related crystals. Then, we will qualitatively describe the
features of our approach. A self-contained formulation of our
model is provided in section 3. In section 4, the absorption ex-
periments and the processing of the raw spectra are described.
The detailed analysis of these experimental data by means of
the model from section 3 is presented in the fifth section. Our
analysis is supported by preliminary quantum chemical cal-
culations. However, only the direction of the CTE transition
dipole moment is actually employed in our model. Therefore,
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we give only a schematic description of these calculations in
the Appendix.

II. THE QUASI-ONE-DIMENSIONAL CRYSTALS
MEPTCDI AND PTCDA

In the following, we will consider quasi-one-dimensional
crystals of the perylene derivatives MePTCDI and PTCDA.
During the last years, intensive investigations of UV-VIS-
absorption (e.g. [12, 19]), electro-absorption [20], IR and
Raman spectra [21, 22], photoluminescence [23–26], photo-
conductivity [10, 27] and photo-emission [28] were per-
formed in order to establish the nature of the lowest energy
states in such crystals.

The excited states of the isolated molecules are well un-
derstood. For similar compounds they were studied by quan-
tum chemical methods (INDO level) by Adachi et al. [29]. In
our own calculations (ZINDO/S, see Appendix) we found re-
sults very similar to Adachi’s for MePTCDI and PTCDA. In
Fig. 2a we show the absorption spectrum of MePTCDI dis-
solved in chloroform. The solution spectrum of PTCDA (in
DMSO) looks almost identical. The three strong absorption
bands in the visible range belong to the lowest π-π∗-transition
of the extended π-electron system. Therefore, this lowest sin-
glet state S1 is only weakly affected by chemical substitutions.
The S0-S1 transition is polarized along the long molecular
axis, and from the absolute absorption cross section we esti-
mate its total electronic transition dipole to be p1 = 6.8 Debye
(see section 4). The next highest dipole allowed singlet state
S2 has a much smaller transition dipole directed along the
short axis in the molecular plane (M-axis). It is associated
with the very weak structure in the solution spectra (Fig. 2) at
3.4 eV, which has an estimated transition dipole of less than
1.8 Debye.

The electronic S0-S1 transition strongly couples to C-C and
C=C stretching modes of the carbon backbone, which leads to
the vibronic progression seen in Fig. 2a [17, 29]. From res-
onant Raman scattering data [22] it follows that in fact there
are several energetically close vibrational modes with large
exciton-phonon-coupling constants. In the UV-VIS-spectra
they are not resolved and can be treated as one effective mode
with an effective coupling constant as done in [17].

In the crystalline phase, the excited states of the
monomer are strongly influenced by intermolecular interac-
tions, which leads to dramatic changes in the absorption spec-
tra (MePTCDI in Fig. 2b and PTCDA in Fig. 2c). Although
very similar in their monomer spectra, MePTCDI and PTCDA
differ considerably in their crystal spectra. This difference
is caused by the steric effects of the substituents which re-
sults in a different geometrical arrangement of the molecules
with respect to each other. Such effects, known as crystal-
lochromy, were studied empirically for a large number of
perylene derivatives (e.g. [12, 30] and references therein).

The first microscopic model for trends in the crystal spectra
of such perylenes was proposed by Kazmaier and Hoffmann
[31]. They studied the one-particle band structures that arise
from the overlap of the molecular HOMO’s and LUMO’s in
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FIG. 2: Comparison of monomer and crystal spectra. a) Molar ex-
tinction coefficient of isolated MePTCDI molecules (0.5 µM solu-
tion in chloroform, room temperature). b) Optical density spectrum
of poly-crystalline MePTCDI (1) for highly oriented domain in thin
film at 5 K, p-polarized and (2) for a larger area of the thin film
at room temperature, s-polarized, to show the region of the S0-S2-
transition. c) Optical density spectrum of crystalline PTCDA (thin
film at 5 K, spectrum is independent of polarization)

the crystal at extended Hückel level. They clearly described
how the one-particle band structure depends in a very subtle
way on the geometric arrangement of the molecules. How-
ever, this model in itself does not yet explain the observed
peak structure of the optical spectra. In our approach, we
assume that the lowest states seen in the optical spectra are
dominated by small radius excitons, which are energetically
well below and qualitatively very different from one-particle
band-to-band excitations.

First attempts to explain the structure of the PTCDA ab-
sorption spectrum were made in the framework of three-
dimensional Wannier-Mott exciton models for the lowest en-
ergy absorption peak at 2.2 eV [32, 33]. Later, this peak was
assigned to a CT exciton in order to explain electro-absorption
experiments [20]. In this line of studies Bulovic et al. gave
an interpretation of the PTCDA crystal spectrum in terms of
Frenkel and localized CT excitons [19]. Still, no interactions
within the exciton manifold were considered. In such a model,
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especially the high absorption cross section of the CT exciton
remains implausible.

The description of the PTCDA spectrum in the framework
of a dimer model with interaction of Frenkel and CT exci-
tons was presented by Hennessy, Soos, Pascal and Girlando
in [17]. In their model, the lowest excited states are described
as strongly mixed states that contain the lowest Frenkel exci-
ton and the lowest CT exciton, each with its vibronic replicas.
Due to the mixing, the oscillator strength of the Frenkel ex-
citon is distributed to all states, and the spectra are explained
without consideration of an intrinsic CTE transition dipole.
However, this model is not able to describe a variation of the
polarization ratio for different absorption peaks, which we ob-
serve in polarized absorption spectra of MePTCDI.

In our paper we present a model which also includes inter-
actions between Frenkel and CT excitons. Instead of a Hol-
stein model as in [17], we consider the case of strong exciton-
phonon coupling, which is a very good approximation (see
below) and allows an exact solution for the infinite chain. Fur-
thermore, we use a simplified picture for the vibronic states.
Our main intention is to discuss a new feature: If in quasi-1D
crystals the intermolecular π-orbital-overlap is large enough
to cause strong mixing between Frenkel and CT excitons, then
this overlap can also be sufficient to produce an observable
transition dipole for CT excitons. Only the inclusion of this
intrinsic charge-transfer transition dipole can explain the ex-
perimentally observed polarization behavior.

The low temperature absorption spectrum of MePTCDI
crystals is roughly characterized by four peaks (cf. Fig. 2b).
Since the lowest energy monomer absorption is dominated by
only three peaks, it can be well described by the lowest en-
ergy electronic transition with three molecular vibronic lev-
els. These three molecular levels become three mixed exciton
bands if we take into account the mixing of molecular con-
figurations arising due to intermolecular resonance interac-
tion. However, such a Frenkel exciton model can not explain
the four significant peaks in the spectrum of the crystal. To
achieve that, we also consider mixing with nearest-neighbor
charge-transfer configurations.

We will show below that the existence of a low energy CTE
and its mixing with Frenkel exciton states gives a natural pos-
sibility to explain not only the appearance of an additional
peak in the absorption spectra but also to explain the observed
polarization dependencies. Since MePTCDI and PTCDA are
crystals with two molecules per unit cell, the transition dipole
of an individual stack can not be directly probed anymore. In
this case, only the polarization ratio R is the externally observ-
able manifestation of the polarization direction of the individ-
ual 1D excitons (cf. section 3). In our polarized absorption
spectra of MePTCDI, we see different ratios R for the various
exciton states (cf. Fig. 4). This means that the exciton states in
the one-dimensional stacks must have a varying polarization,
which deviates from the direction of the long molecular axis.

The existence of such a deviation is in agreement with sym-
metry considerations: Indeed, in both MePTCDI and PTCDA
crystals, the individual stacks have a stacking direction, which
is not perpendicular to the molecular plane. In a projection on
the molecular planes, two neighboring molecules are shifted

with respected to each other in both the directions of the long
and the median (M-) molecular axis. Due to this shift, an indi-
vidual stack belongs to a class of crystals with the symmetry
site group Ci. That means that the transition dipole moment
from the ground state to the dipole allowed excited states can
have three nonvanishing components Px, Py, Pz. If we take
the x-axis along the long molecular axis, the lowest excited
molecular state has its transition dipole only in the x direc-
tion. The reason for the appearance of nonzero components
Py, Pz in the stack can only be the mixing with other intra- or
intermolecular configurations having a different polarization.
For example, this might be the second excited molecular state,
which is polarized along the M-axis. However, in section 5 we
will estimate that this state does by far not sufficiently mix to
explain the experimentally observed polarization ratios. We
therefore consider the mixing with the lowest energy CT exci-
tons as the reason for the appearance of new transition dipole
components.

The direction of the CT transition dipole cannot be esti-
mated from symmetry considerations. In the Appendix, we
will show that the CT transition dipole lies approximately in
the molecular plane and has a large component parallel to the
molecular M-axis. Thus, a varying mixing with this CT state
can explain the varying polarization ratio, which would oth-
erwise be an implausible phenomenon even on a qualitative
level.

III. MODEL HAMILTONIAN AND MIXING OF FRENKEL
AND CHARGE-TRANSFER STATES

For the description of the excited states in a one-
dimensional molecular crystal with one molecule per unit cell
we use the following Hamiltonian:

H = HF + HFF + HC + HFC

HF =
∑

nν

∆ν
FB†

nνBnν

HFF =
∑

nν
mµ

′
Mνµ

nmB†
nνBmµ

HC =
∑

nσ

∆CTC†
nσCnσ

HFC =
∑

nν

{
εν
e (B†

nνCn,+1 + B†
nνCn,−1)

+ εν
h(B†

nνCn+1,−1 + B†
nνCn−1,+1)

}
+ h.c. (1)

Here the operator B†
nν (Bnν) describes the creation (anni-

hilation) of a neutral molecular excitation (Frenkel exciton) at
lattice site n. Only one electronically excited molecular state
is considered, and the index ν specifies the excited vibrational
level (ν = 0, 1, . . . , νmax). Then, ∆ν

F is the on-site energy of
a Frenkel exciton and M νµ

nm the hopping integral for excita-
tion transfer from level ν at site n to level µ at site m. In the
summation in HFF the terms for n = m are omitted.
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The Hamiltonian HF + HFF can be used to describe the
mixing of molecular configurations for Frenkel excitons with
several excited states in Heitler-London approximation. The
mixing of molecular configurations in the theory of Frenkel
excitons was considered by Craig [34, 35]. Craig demon-
strated that the intensities of the weak lowest energy tran-
sitions in some organic crystals can not be explained by an
electronic two-level model for the molecules constituting the
crystal. Rather, it is necessary to take into account the higher
excited molecular states and the mixing of molecular con-
figurations arising due to the intermolecular interaction. In
this theory, the intermolecular interaction was considered to
be small in comparison with the separation between the ex-
cited state levels. A more general theory of Frenkel excitons
in molecular crystals developed by Agranovich [36, 37] gave
the possibility to consider also the mixing of molecular ex-
cited states with close energies. In HFF from (1) we use this
formulation (reviewed in e.g. [38, 39]) and consider explicitly
all interactions between the various molecular configurations.

Since we use only the operators B†
nν in (1) to describe the

electronic and vibrational state of molecule n, we neglect the
configurations in which the exciton and an (intramolecular)
optical phonon are located on different molecules. This ap-
proximation corresponds to the limit of strong exciton-phonon
coupling. With an accuracy of ≈5% it gives the same exciton
bandwidth for PTCDA as obtained in [40], where all possible
exciton - optical phonon configurations were taken into ac-
count. Such a result could be qualitatively expected because
in PTCDA (and similarly in MePTCDI) the exciton-phonon
coupling constant g=0.84 (as used in [40]) is rather large.

In the present paper, we also include the nearest-neighbor
charge transfer excitons, in addition to the Frenkel excitons.
A localized CT exciton with the hole at lattice site n and the
electron at lattice site n + σ (σ = −1, +1) is created (an-
nihilated) by the operator C†

nσ (Cnσ). For simplicity, only the
vibrational ground state is considered for the CT excitons with
∆CT as their on-site energy. Hopping of CT states will not be
considered.

The mixing between Frenkel and CT excitons is expressed
in the last part HFC of the Hamiltonian. Here, the transforma-
tion of a CT state into any Frenkel state at the lattice site of ei-
ther hole or electron is allowed. The relevant transfer integrals
εν
e (εν

h) can be visualized as transfer of an electron (hole) from
the excited molecule n to its nearest-neighbor. With this for-
mulation of the Hamiltonian HFC, the CT excitons are math-
ematically treated just like another molecular excitation.

In order to diagonalize the Hamiltonian, we first transform
all operators into their momentum space representation:

Bkν :=
1√
N

∑

n

e−iknBnν (2)

Ckσ :=
1√
N

∑

n

e−iknCnσ (3)

Then the Hamiltonian takes the form:

H =
∑

k

( HF
k + HFF

k + HC
k + HFC

k )

HF
k =

∑

ν

∆ν
FB†

kνBkν

HFF
k =

∑

νµ

Lνµ
k B†

kνBkµ

HC
k =

∑

σ

∆CTC†
kσCkσ

HFC
k =

∑

ν

B†
kν

{
(εν

e + εν
heik)Ck,+1

+ (εν
e + εν

he−ik)Ck,−1

}
+ h.c. (4)

Here, the symbol Lνµ
k is used to abbreviate the lattice sum

Lνµ
k :=

∑

m

′
eikmMνµ

0m . (5)

The Hamiltonian (4) is already diagonal with respect to k. It
still contains mixed terms of the ν = 0, . . . , νmax operators
for the Frenkel excitons and the two operators for CT excitons.
These are altogether νmax+3 molecular configurations, which
would yield νmax + 3 mixed exciton bands.

With several simplifying assumptions we now reduce the
number of parameters in the Hamiltonian, which also allows
the separation of one non-mixing exciton band. The param-
eters are given by the transition matrix elements with the
considered states. Using product wave functions in Born-
Oppenheimer approximation, we can write for the ground
state

|0〉 = |
∏

n

ϕ0
nχ00

n 〉(−) (6)

and for the Frenkel excitons

B†
nν |0〉 = |ϕ1

nχ1ν
n

∏

n′ 6=n

ϕ0
n′χ00

n′ 〉(−) . (7)

Here ϕ0
n and ϕ1

n denote the electronic part of the wave func-
tion of molecule n in the ground and first electronically ex-
cited state. χµν

n is the vibrational wave function of molecule
n in its µth electronic and νth vibrational state. The upper
index (−) at the Dirac bracket indicates that the product wave
function is antisymmetrized with respect to all electrons. The
CT states are represented by:

C†
n,+1|0〉 = |ϕ+

n χ+0
n ϕ−

n+1χ
−0
n+1

∏

n′ 6=n

n′ 6=n+1

ϕ0
n′χ00

n′ 〉(−) , (8)

C†
n,−1|0〉 = |ϕ−

n−1χ
−0
n−1ϕ

+
n χ+0

n

∏

n′ 6=n

n′ 6=n−1

ϕ0
n′χ00

n′ 〉(−) , (9)

where ϕ±
n and χ±

n refer to the ionized molecules.
Using these representations, the Frenkel exciton transfer in-

tegral can be split into an electronic and a vibronic part:

Mνµ
nm = 〈B†

nν0|H|B†
mµ0〉

= Mnmsνsµ (10)

The vibronic overlap factors

sν = 〈χ1ν
n |χ00

n 〉 (11)
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defined here are directly related to the Franck-Condon factors
F0ν = |〈χ1ν |χ00〉|2. Since the Frenkel exciton transfer inte-
grals Mnm in dipole approximation are decreasing with dis-
tance by (n − m)−3, we can neglect all but nearest-neighbor
transfer in the one-dimensional case:

Mnm = δn±1,mM (12)

with M being the nearest-neighbor exciton transfer integral.
With this approximation, Lνµ

k from (5) is reduced to

Lνµ
k = 2Msνsµ cos k . (13)

The vibrational overlap factors for the Frenkel states can be
easily derived from the absorption spectrum of the molecule in
solution. Since the coupling to intramolecular vibrations is in
our case strong compared to intermolecular phonon coupling,
the overlap factors from isolated molecules can be used for
the crystalline phase as well.

For CT excitons the situation is different. There is no di-
rect access to the vibrational overlap factors connected with
χ+0

n and χ−0
n . We therefore make the strongly simplifying

assumption that

χ+0
n = χ−0

n = χ00
n , (14)

which corresponds to neglecting the vibrational relaxation of
the ionized molecules. The relaxation energy of an ion is
expected to be smaller than that of the excited singlet state
since only in one orbital the occupation is changed. Quantum
chemical calculations for PTCDA [41] give indeed smaller re-
laxation energies of 72 meV (cation) and 127 meV (anion)
compared to 323 meV for the excited singlet. A similar trend
is confirmed for the relaxation energy of the anion in [42].
Although smaller than for the singlet, such relaxation ener-
gies would still have a considerable influence. In this paper,
we nevertheless prefer to use the approximation (14) since it
provides a conceptually simple qualitative model with a min-
imum set of parameters and states.

Then we obtain

εν
e = 〈B†

nν0|H|C†
n,+10〉

= (−)〈ϕ1
n

∏

n′ 6=n

ϕ0
n′ |H|ϕ+

n ϕ−
n+1

∏

n′ 6=n

n′ 6=n+1

ϕ0
n′〉(−)

︸ ︷︷ ︸

εe

〈χ1ν
n |χ00

n 〉

︸ ︷︷ ︸

sν

= εesν (15)

εν
h = 〈B†

nν0|H|C†
n+1,−10〉

= (−)〈ϕ1
n

∏

n′ 6=n

ϕ0
n′ |H|ϕ−

n ϕ+
n+1

∏

n′ 6=n

n′ 6=n+1

ϕ0
n′〉(−)

︸ ︷︷ ︸

εh

〈χ1ν
n |χ00

n 〉

︸ ︷︷ ︸

sν

= εhsν (16)

With these simplifications, the Hamiltonian for the Frenkel-
CT-mixing becomes:

HFC
k =

∑

ν

sνB†
kν

{
(εe + εhe

ik)Ck,+1

+(εe + εhe−ik)Ck,−1

}
+ h.c. (17)

We now introduce two new operators with even and odd sym-
metry with respect to change of the direction of the charge
transfer:

C̃kg :=
1√
2εk

·
{
(εe + εhe

ik)Ck,+1

+(εe + εhe
−ik)Ck,−1

}
(18)

C̃ku :=
1√
2εk

·
{
(εe + εhe

ik)Ck,+1

−(εe + εhe
−ik)Ck,−1

}
, (19)

where

εk :=

√

ε2+ cos2
k

2
+ ε2− sin2 k

2
(20)

with

ε± := εe ± εh . (21)

The Hamiltonian for the CT states then simplifies to:

HC
k = ∆CT

{

C̃†
kgC̃kg + C̃†

kuC̃ku

}

(22)

HFC
k =

∑

ν

√
2εksν · B†

kν C̃kg + h.c. (23)

The odd operator C̃ku does not mix with the Frenkel operators
anymore, which reduces the number of mixed exciton bands
by one. The remaining even part Hg

k of the Hamiltonian can
be formally diagonalized by transformation to new operators
ξkβ

ξkβ :=

νmax∑

ν=0

{
u∗

νβ(k)Bkν

}
+ c∗β(k)C̃kg (24)

where the transformation matrix (uνβ , cβ) is the solution of
the Eigenvalue problem for the matrix Hαβ of the coefficients
in the Hamiltonian:

Hαβ =
















...
··· δνµ∆ν

F
+2Msνsµ cos k ···

...







νµ







...
√

2εksν

...







ν
(

···
√

2εksµ · · ·
)

µ

∆CT











(25)

The diagonalization of this matrix was always carried out nu-
merically. Since Hαβ is real and symmetric, the transforma-
tion matrix is also real, and we omit the notation for the com-
plex conjugate from now on.

With the knowledge of the excited states we can also calcu-
late the transition dipole moments for optical excitation. From
(20) it follows for k = 0 that HFC

k=0 is only determined by
εk=0 = |ε+|. If ~P is the total transition dipole operator, the
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transition dipole moment for the state ξ†k=0,β |0〉 can be ex-
pressed as a sum of Frenkel and CT transition dipoles:

~P β = 〈ξ†k=0,β0|~P|0〉

=

νmax∑

ν=0

uνβ(k=0) · 〈B†
0ν0|~P|0〉

︸ ︷︷ ︸

FE

+ cβ(k=0) · 〈C̃†
0g0|~P|0〉

︸ ︷︷ ︸

CT

= ~P β
FE + ~P β

CT (26)

These transition dipoles can be related to molecular properties
as follows: For the Frenkel exciton part we obtain with (2) and
(7):

~P β
FE =

νmax∑

ν=0

uνβ(k=0) sν · 1√
N

×
∑

n

(−)〈ϕ1
n

∏

n′ 6=n

ϕ0
n′ |~P|

∏

n′′

ϕ0
n′′ 〉(−) (27)

If intermolecular exchange effects are neglected in this ex-
pression, ~P can be split into a sum of molecular transition
dipole operators ~Pn with ~pME = 〈ϕ1

n|~Pn|ϕ0
n〉 being the tran-

sition dipole moment of a molecular excitation:

~P β
FE =

√
N~pME ·

νmax∑

ν=0

uνβ(k=0) sν

Using the abbreviation

Uβ(k) :=

νmax∑

ν=0

uνβ(k) sν , (28)

the Frenkel part of the transition dipole can be written as:

~P β
FE =

√
N~pME · Uβ(k=0) (29)

In the same way, we obtain from (8), (9) and with (14):

~P β
CT = cβ(k=0)

1√
N

∑

n

× (−)〈ϕ
+
n ϕ−

n+1 + ϕ−
n ϕ+

n+1√
2

︸ ︷︷ ︸

|CTg
n〉

∏

n′ 6=n

n′ 6=n+1

ϕ0
n′ |~P|

∏

n′′

ϕ0
n′′〉(−)(30)

Here, we can separate an even CT state for a dimer
|CTg

n〉 = |1/
√

2(ϕ+
n ϕ−

n+1 + ϕ−
n ϕ+

n+1)〉(−) with a transition
dipole ~pCT. If we again neglect exchange of electrons be-
tween the CT dimer and the other molecules in the ground
state, we obtain:

~P β
CT =

√
N~pCT · cβ(k=0) (31)

The state |CTg
n〉 corresponds to the symmetric CT state

|CT+〉 of an isolated dimer, which is analyzed in the Ap-
pendix: We show there that ~pCT can have a considerable value
and a different direction compared to ~pME. Below, we express

the total transition dipole ~P β in (26) by means of the unit vec-
tors ~tME := ~pME/pME and ~tCT := ~pCT/pCT. Using the
relative CT transition dipole prel

CT := pCT/pME , we obtain
from (29) and (31):

~P β =
√

NpME ·
(

Uβ(k=0)
~tME

︸ ︷︷ ︸

FE

+ prel
CTcβ(k=0)

~tCT
︸ ︷︷ ︸

CT

)

(32)

Here, the effect of the CT state on the polarization ~P β of the
mixed exciton states is clearly visible: Without consideration
of a finite CT transition dipole (prel

CT = 0), all states are po-
larized along the direction ~tME. In this case, the CT mixing
causes only the appearance of an additional absorbing exci-
ton state. The redistribution of the Frenkel exciton transition
dipole to all states is depicted by the notion that the CT exciton
‘borrows’ its oscillator strength from the Frenkel states. In the
case of a finite CT transition dipole (prel

CT > 0), an additional
component appears. If ~tCT contains a component perpendic-
ular to ~tME, the contribution of the CTE in each exciton state
could be directly seen in an absorption spectrum with light
polarized along this perpendicular component.

Up to now, the model was strictly one-dimensional. A real-
istic three-dimensional crystal consists of a two-dimensional
array of weakly interacting one-dimensional stacks. The
macroscopically observable polarization is the net effect of all
one-dimensional stacks. In a crystal with only one molecule
per unit cell, all one-dimensional stacks have the same orien-
tation and the transition dipole (32) of a 1D-exciton state can
be directly probed by polarized light. MePTCDI and PTCDA
crystals, however, contain two molecules per unit cell, which
form two non-equivalent one-dimensional stacks A and B.
If we want to measure the polarization ~P β(A) of the exci-
ton state β in stack A, we will also observe the contribution
~P β(B) from the other, non-equivalent stack B.

Now, two cases have to be distinguished. If the interaction
between the stacks is sufficient to cause coherently coupled
exciton states, two Davydov components with different ener-
gies and orthogonal polarization ~P β

p/s will be formed:

~P β
p/s =

√

N2

~P β(A) ± ~P β(B)√
2

, (33)

where 2N2 is the number of stacks. The oscillator strength
of a state with energy E and transition dipole ~P is F =

2m/(e2h̄2) · E|~P |2 (in cgs-units). With (32) and (33), the di-
rectly observable oscillator strength for light polarized along
the p and s directions of the Davydov components are there-
fore given by:

F β
p/s =

mN2N

e2h̄2 p2
MEEβ ·

∣
∣
∣
∣
Uβ(k=0)

[
~tME(A) ± ~tME(B)

]

cβ(k=0)p
rel
CT

[
~tCT(A) ± ~tCT(B)

]
∣
∣
∣
∣

2

(34)

If, however, the interaction between the stacks is too weak
to create coherently coupled states (oriented gas model), a po-
larized light beam will probe the components of each 1D-state
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independently. Let us consider light polarized within the plane
spanned by ~P β(A) and ~P β(B). We now rotate the polariza-
tion in this plane. If the angle between ~P β(A) and ~P β(B) is
< 45◦ (> 45◦), the absorption will have a maximum (mini-
mum) in the p-direction given by ~P β(A)+ ~P β(B) and a mini-
mum (maximum) in the s-direction given by ~P β(A)− ~P β(B).
Adding the effective components of the oscillator strength
gives for both directions the same result that is obtained for the
two Davydov components in the case of coherent coupling.
Therefore, equation (34) gives the correct oscillator strength
for both coherent and incoherent inter-stack coupling. The
difference between the two regimes is exclusively expressed
by the peak positions for the two polarization directions: Only
in the case of coherent coupling, the absorption maxima for
p- and s-polarized light occur at a different energy (Davydov
splitting).

For a general investigation of the polarization behavior, all
four directions ~tME(A/B) and ~tCT(A/B) would have to be
considered. For simplification, we will discuss only the polar-
ization in the plane spanned by ~tME(A) and ~tME(B). The po-
larization of a pure Frenkel state lies exclusively in this plane,
which we will henceforth call the ‘FE-plane’. If the CT transi-
tion dipoles have components perpendicular to the FE-plane,
these components can be directly observed as out-of-plane
components. If, however, the CT transition dipoles lie in the
FE-plane, their contribution is only indirectly accessible. As
will be described in section 5, this latter case is approximately
realized in MePTCDI and PTCDA. Let ~t ′

CT(A/B) be the pro-
jections of ~tCT(A/B) on the FE-plane. Then, the substitution
~tCT → ~t ′

CT gives in (32) the component ~P ′β of the 1D-stack
exciton in the FE-plane, and in (34) the measurable oscillator
strength F ′β

p/s for light polarized in the FE-plane.
The polarization ratio in the FE-plane is defined as

R′β =
F ′β

p

F ′β
s

. (35)

This polarization ratio is the observable expression of the ex-
citon polarization in the FE-plane. If prel

CT = 0 it greatly sim-
plifies and becomes

R0 =
cos2 ϕ

sin2 ϕ
,

where ϕ is the angle between ~tME(A) and ~tME(B). Remark-
ably, R0 is the same for all these vibronic exciton states since
all Frenkel states have the same polarization ~tME. The finite
value of R0 for ϕ 6= 0 expresses the fact that there is absorp-
tion for all light polarizations in the FE-plane due to the two
non-equivalent molecules. Therefore, an additional CT tran-
sition dipole in the FE-plane will not appear as a completely
new component but will only influence the polarization ratio.
Although R0 is well defined by the crystal structure, an exper-
imental deviation from R0 could also arise if the measurement
was not performed precisely in the FE-plane or if the sample
consisted of crystallites with imperfect orientation. However,
both these experimental imperfections would lead to a con-
stant polarization ratio for all considered states. On the other

hand, a CT contribution with prel
CT > 0 will vary for the var-

ious mixed states (cβ 6= const) and will therefore lead to a
varying polarization ratio. This variation of R′β as a func-
tion of the band index β is the observable consequence of the
admixed CT transition dipole.

Thus, we can expect two main effects from the Frenkel-
charge-transfer mixing in our model Hamiltonian: (i) If the
coupling constant ε+ is in the same order as the energetic
separation between the CTE and at least one of the νmax+1
vibronic Frenkel states, the model predicts a strong mixing
resulting in νmax+2 significantly absorbing states. (ii) With
a finite CT transition dipole (not parallel to the molecular
dipole), the polarization direction of the states will vary due to
the varying composition of the bands. In a three-dimensional
crystal with two molecules per unit cell, this will lead to a
variation of the polarization ratio R′β as a function of the band
index β.

IV. MEASUREMENT OF ABSORPTION SPECTRA

Absorption spectra were obtained and analyzed in the fol-
lowing way: All spectra are given as the optical density of
the whole sample: O.D. = − log10 (transmitted intensity
/ incident intensity). The organic dyes were commercially
purchased (MePTCDI from Syntec, Wolfen; PTCDA from
Aldrich) and purified by gradient sublimation. For obtain-
ing solution spectra at well defined concentrations, an indi-
rect method was used because of the extremely low solubility
of the materials. In order to dissolve a measurable amount
of material, we first vapor-deposited a thin film onto a poly-
mer substrate (commercial cellulose acetate film base, Film-
fabrik Wolfen, Germany) behind a well-defined mask. This
dye-covered substrate was then dissolved in chloroform (for
MePTCDI) or DMSO (dimethyl-sulfoxide, for PTCDA) and
the solution further diluted. Optical density spectra were mea-
sured of this solution, and the spectra of a reference solution
with a dissolved blank substrate were subtracted. Then, films
were vapor-deposited onto glass substrates under identical
conditions. The films on the glass substrates were dissolved
in conc. H2SO4 and measured like the films on the poly-
mer substrate. The solution spectra in H2SO4 are strongly
red shifted compared to chloroform or DMSO, but still show
the distinct chromophore absorption. Now, the concentration
of the H2SO4 solutions, which is equal to the unknown con-
centration in the organic solvents, can be determined: Due to
the much higher solubility in H2SO4, 10 mg of the dyes could
be reproducibly dissolved in 50 ml H2SO4 and then diluted
to a similar concentration like the solutions from the vapor-
deposited film.

The solution spectrum of MePTCDI in chloroform is shown
in Fig. 2a. The spectrum of PTCDA in DMSO looks almost
identical. We note that for MePTCDI in solution the concen-
tration dependence is similar as discussed in [19] for PTCDA:
At concentrations higher than 2 µmol/l, a new peak at 2.16 eV
appears, which is due to the formation of aggregates. From the
monomeric solvent spectra (Fig. 2a) we obtained the oscillator
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strength by (e.g. [43], p.9):

fsol = 4.319 · 10−9

∫

εν̃dν̃, (36)

where εν̃ is the decadic molar extinction coefficient in l/(mol·
cm) and ν̃ the wave number in cm−1. By integrating over
the intense bands (2.2 − 3.1 eV) we obtain the oscillator
strength (in solution) of the S0-S1-transition (MePTCDI: 0.53,
PTCDA: 0.65) and by integration over the weak structure at
3.1 − 3.6 eV the oscillator strength of the S0-S2-transition
(MePTCDI: 0.052).

In order to account for the local field effects caused be the
solvent, we used the simple correction

fgas = fsol · n0

(
3

n2
0 + 2

)2

, (37)

where n0 is the refractive index of the solvent at the consid-
ered frequency. This correction corresponds to the model of a
hollow sphere in a dielectric continuum (application to solu-
tion spectra e.g. in [43], p. 100) or to the model of a substi-
tutional impurity in an isotropic crystal ([39], p.56). With ap-
plication of (37), we obtain the gas-phase oscillator strengths
and with p2 = 3he2/(8π2mcν̃)fgas ([43], p. 58) the gas-
phase transition dipoles for the S0-S1-transition (MePTCDI:
p1 = (6.8 ± 0.7)Debye, PTCDA: p1 = (7.4 ± 0.7)Debye)
and for the S0-S2-transition (MePTCDI: p2 ≈ 1.8 Debye).

These values contain considerable uncertainties. The sta-
tistical error of our procedure we estimate to be 20% for the
oscillator strength. The correction for vacuum values can be
very uncertain, too ([43], p. 100). Furthermore, the S0-S2

absorption lies hardly above the background level. A con-
siderably higher value of fsol=1.0 for the MePTCDI S0-S1

transition in chloroform is reported in [44]. For our purposes,
these uncertainties are not critical since we only need the ap-
propriate order of magnitudes for the estimations in section 5.

From the solution spectra, the vibrational spacing h̄ω and
the vibronic overlap factors sν according to (11) can be ob-
tained: Therefore, the spectra were fitted by a sum of four
Gaussians. The relative oscillator strength of each peak,
i. e., its Franck-Condon factor F0ν can be expressed with the
exciton-phonon-coupling constant g by [45]:

F0ν = |〈χ1ν |χ00〉|2 =
g2ν

ν!
e−g2

(38)

With (38), g and thereby the overlap factors sν can be derived
from the relative oscillator strengths of two levels. We eval-
uated the first two levels (ν = 0, 1) to obtain h̄ω and s0, s1.
The overlap factor s2 was calculated in the same way by relat-
ing the level ν = 2 to the zero level. This results in a spacing
h̄ω = 0.17 eV (MePTCDI and PTCDA) and overlap factors
s0 = 0.64, s1 = 0.60, s2 = 0.36 (MePTCDI) or s0 = 0.62,
s1 = 0.61, s2 = 0.37 (PTCDA).

For obtaining crystal spectra, thin films were grown by
physical vapor deposition in high vacuum (p < 10−3 Pa)
from indirectly heated quartz glass crucibles. The film thick-
nesses were ≈ 100 nm and the deposition rate was kept at

≈ 0.2 nm/s. As substrate, we used a polymer film (PETP,
polyethylene terephthalate) which was produced as a commer-
cial photographic film base (Filmfabrik Wolfen, Germany).
Such a film is stretched during the production first in the longi-
tudinal and then in the transverse direction ([47], p. 65). Sub-
strate temperatures during the deposition process were varied
between −170 ◦C and +100 ◦C. For all substrate tempera-
tures, films of PTCDA were optically homogeneous (down to
a length scale of several µm) and showed no azimuthal po-
larization dependence. For MePTCDI, the films appear in-
homogeneous and their absorption varies with the azimuthal
polarization direction. The largest polarization ratio, i.e, the
strongest anisotropy, was found for films produced at approx-
imately room temperature. Therefore, all investigations pre-
sented here were done at films grown at room temperature.

The films of MePTCDI, which appear inhomogeneous to
the naked eye, consist of domains with irregular shape and
sizes of 1 − 1000 µm. A few of these domains have a clear
rectangular shape, a very homogeneous absorption (at 1 µm
resolution), a high polarization ratio and the direction of their
maximum absorption lies parallel to the transverse stretch-
ing direction of the polymer substrate. Such domains were
chosen for microscopic polarized absorption measurements.
From atomic force microscopy, it could be shown that these
domains, in spite of their optical homogeneity, still consist of
microcrystals of ≈ 100 nm diameter.

For low temperature measurements, the samples were
cooled in a helium cryostat with gaseous helium at ambient
pressure in the sample compartment. The temperature (5 K)
was measured at the sample holder. The spectra were only
weakly dependent on the temperature and gradually broaden
at temperatures above ≈ 20 K. The sample was illumi-
nated with a halogen lamp through a blue colored filter for
spectral adaption. Several lenses and apertures were set up
as an imaging system, which allowed to direct the light se-
lected from an area of typically 5 × 5 µm2 into the entrance
slit of a spectrograph. A polarizing filter was installed be-
tween the sample and the spectrograph. The optical density
was determined from two consecutive light intensity mea-
surements with a diode array, the first with the sample and
the second after removing the sample. This set-up was suc-
cessfully tested by comparing the spectra of the homoge-
neous and isotropic PTCDA films measured at room temper-
ature with measurements in a commercial spectro-photometer
(UV-2101/3101PC, Shimadzu). The spectral resolution of the
set-up was experimentally checked with a HeNe laser and
amounted to 1 nm.

With this set-up, the optical density of the PTCDA film and
of domains in the MePTCDI film was measured for the po-
larization directions of maximum and minimum absorption (p
and s direction, resp.). These optically determined polariza-
tion directions correspond to the transverse and longitudinal
stretching directions of the film base substrate. Then, the op-
tical density of a pure substrate was subtracted. The spectrum
of PTCDA does not depend on the polarization and is shown
in Fig. 2c. For MePTCDI, the spectra for the two polarization
directions are given in Fig. 4. At room temperature, the spec-
tra of MePTCDI look qualitatively similar to the absorption
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spectra of the microcrystal dispersion [46] to which the crys-
tal structure analysis [30] is correlated. Also, we have never
observed phase transitions (such as between α- and β-copper-
phthalocyanine) in the absorption spectra for films grown at
varying substrate temperatures (−170 ◦C . . .+100 ◦C). X-ray
diffraction measurements (see section 5) give the same (102)
lattice plane spacing as in [30]. Therefore, we assume that our
films consist of microcrystals with the crystal structure from
[30]. For PTCDA we assume the α-phase crystal structure
from [13–16].

For further application of the exciton model, all spectra
were analyzed in terms of a four-band model. With neglect
of frequency dependent damping, the transition dipole ~P β

p/s

determines the dielectric constant in the vicinity of the transi-
tion ([48], p. 360) and is therefore related to the spectroscopic
quantity:

|~P β
p/s|2 ∝

∫

nκ dE (39)

where n and κ are the real and imaginary part of the complex
refractive index. The determination of the complex refractive
index for thin organic layers requires more than one transmis-
sion measurement and was not possible for our small domains
at low temperature. Such measurements were done for homo-
geneous and (in the film plane) isotropic films of MePTCDI
at room temperature [49]. We now presume that n does not
strongly depend on temperature and polarization and use the
n values from [49]. Furthermore, we approximate the absorp-
tion coefficient µ = 2κE/(h̄c) to be proportional to the opti-
cal density of the sample. This approximation was checked to
be very good for films of such thickness by comparing room
temperature O.D. spectra with the optical constants from [49].
Obviously, reflection and multiple interference effects play a
minor role in our case of rather large film thicknesses. Thus,
a relative measured oscillator strength (peak intensity) can be
evaluated as

F̃ β
p/s := n(Eβ)

∫

O.D. dE . (40)

Now, the four predicted exciton bands have to be assigned
to the peaks in the O.D. spectra. The high energy spectral re-
gion between 2.6 eV and 3.0 eV cannot be well described by
one simple Gaussian. Therefore, we fitted the whole spectrum
with a sum of five Gaussians (G1-G5), which is shown for
the p polarized spectrum of MePTCDI in Fig. 3. The center
position and total area of the Gaussians G1 - G3 are directly
interpreted as experimental energies Ẽβ

p/s and intensities F̃ β
p/s

of exciton states. Ẽ4
p/s and F̃ 4

p/s of the highest exciton state
is then assigned to the weighted average of the two Gaussians
G4 and G5. We apply this somewhat artificial procedure in
order to use a model with only four exciton bands. As will
be discussed in section 5, the high energy region is expected
to have a complicated structure. A detailed description of this
structure is beyond the scope of this paper. The obtained peak
positions and intensities are listed in Table 1. A graphic rep-
resentation is given in Fig. 4 for the peak positions and ex-
perimental polarization ratios R̃β := F̃ β

p /F̃ β
s . We applied the
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FIG. 3: Peak analysis for the p-polarized optical density spectrum
of MePTCDI. The measured spectrum is fitted by a sum of five
Gaussians (G1-G5). For the interpretation in a four-band-model, the
weighted average of G4 and G5 is assigned to one exciton band at
E4.

same procedure to the low-temperature absorption spectrum
of PTCDA (shown in Fig. 2c) using optical constants deter-
mined as in [49].

V. APPLICATION OF THE MODEL TO POLARIZED
ABSORPTION SPECTRA

For an application of the model from section 3, we first
consider only the polarized spectra of MePTCDI, which are
shown in Fig. 4. The peak fitting results are summarized in
Table 1 and the peak positions and polarization ratios are also
visualized in Fig. 4. Already qualitatively it is obvious that
the polarization ratio varies for the four peaks, which justifies
the application of the model. Furthermore, a clear Davydov
splitting in the order of 10− 25 meV can be observed (cf. Ta-
ble 1), which indicates a coherent coupling between the non-
equivalent stacks. We will at first neglect this small splitting
and apply the one-dimensional model.

Since the monomer absorption spectra (see Fig. 2a) show
three significant peaks, we consider νmax+1 = 3 levels ∆ν

F of
the molecular Frenkel exciton. Since the vibrational spacing
h̄ω of the monomer is not expected to change significantly
in the crystal, the energy levels ∆ν

F can be expressed by one
parameter ∆0

F:

∆ν
F = ∆0

F + νh̄ω (41)

The on-site energy ∆0
F of the lowest level differs from the

value of the isolated molecule by the gas-to-crystal shift D
and is therefore an unknown parameter. The further unknown
parameters in the Hamiltonian matrix (25) at k = 0 are ∆CT,
M , and |ε+|. With these four parameters, the peak positions
of the four exciton states are determined.

For a description of polarization dependent peak intensities
in (34), ~pME(A/B) and ~pCT(A/B) are additionally required.
The direction ~tME(A/B) is clearly given by the long molec-
ular axes of the two molecules in the unit cell. The angle ϕ
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TABLE I: Experimental results vs. model fit for MePTCDI. The ex-
perimental peak positions Ẽβ , intensities F̃ β and Davydov splittings
∆Ẽβ are derived from a peak analysis described in section 4. All
numbers are given in eV.

band No β 1 2 3 4

Exp: Ẽ
β
p , Ẽ

β
s 2.118 2.129 2.265 2.265 2.480 2.497 2.724 2.749

Model: Eβ 2.112 2.292 2.491 2.644

Exp: F̃
β
p , F̃

β
s 0.392 0.095 0.463 0.156 0.507 0.108 0.965 0.233

Model: F
β
p , F

β
s 0.289 0.062 0.166 0.060 0.629 0.123 2.042 0.338

Exp: ∆Ẽβ -0.011 0.000 -0.017 -0.025

Model: ∆Eβ -0.011 -0.005 -0.019 -0.050

between ~tME(A) and ~tME(B) derived from the crystal struc-
ture [30] amounts to ϕ = 36.8◦. The directions ~tCT(A/B)
of the CTE are discussed in the Appendix. Within an individ-
ual stack, ~tCT lies approximately in the molecular plane and
makes an angle of γ = 68◦ with the long molecular axis. With
knowledge of these directions, only the absolute values pME

and prel
CT remain as unknown parameters of the model.

For simplification, we will now only consider the polariza-
tion behavior in the FE-plane spanned by the molecular tran-
sition dipoles, as it is discussed in section 3. This plane can
be well approximated by the (102) plane of the crystal, be-
cause in MePTCDI and especially in the well-known case of
PTCDA the molecules lie approximately in the (102) plane:
The molecular N-axis (normal to the molecular plane) devi-
ates by only ≈ 10◦ from the [102] direction (derived from
[30]) in MePTCDI and ≈ 5◦ in PTCDA [52]. Furthermore,
also the CT transition dipoles ~pCT(A/B), which are roughly
parallel to the molecular planes, lie in this FE-plane approxi-
mated by the (102) crystal plane. Therefore, we do not explic-
itly consider the projection ~t ′

CT of the CT transition directions
on the FE-plane but directly use equation (34) for the oscilla-
tor strength in the (102) plane.

In our investigated thin films, the (102) plane lies pref-
erentially parallel to the substrate plane, and the measured
polarized spectra directly probe the transition dipoles of the
predicted exciton states. This preferential orientation is con-
cluded from X-ray diffraction measurements and supported
by the polarization behavior of the S0-S2 transition: X-ray
measurements of an ≈ 100 nm thick film in Bragg-Brentano
geometry show only one peak corresponding to a lattice plane
distance of (3.23±0.01) Å. According to the published crystal
structure [30], we assign this peak to the (102) lattice planes
(d102 = 3.22 Å). Rocking curve measurements of the (102)
peak (cf. [50] for PTCDA) give a rocking width of about 7◦

FWHM for tilting the sample in both the p or the s direction.
Although narrower rocking curves are possible for well or-
dered organic films (e.g. 0.3◦ for PTCDA on GeS(010) [50]),
the finite rocking width in our samples proves that for the ma-
jority of the crystallites the (102) plane makes only a small an-
gle with the substrate plane (for ≈ 95 % within ±2σ = ±6◦).

Further confirmation is provided by the polarization behav-
ior of the M-axis polarized S0-S2 transition, which does not
significantly mix with the S0-S1 transition (see below). The

spectral region of this transition could only be measured at
room temperature without spatial resolution and is shown for
the s-direction in Fig. 2b. Compared to the intensity ratio of
the isotropically oriented monomer in solution, the S0-S2 peak
is greatly enhanced with respect to the S0-S1 absorption struc-
ture for this polarization. For the p direction, the S0-S1 inten-
sity increases and the S0-S2 intensity decreases. That means,
that both the long-axis transition S0-S1 and the M-axis tran-
sition S0-S2 must have a considerable component in the sub-
strate plane. A quantitative evaluation is not possible, since
the S0-S2 intensity is too weak compared to the unidentified
ground level in this region and due to the unknown influence
of an anisotropic refractive index. Both X-ray diffraction and
these polarization data demonstrate that the (102) plane of the
MePTCDI crystallites lies parallel to the substrate. Such a
growth mode is very common for PTCDA and it is also ob-
served for MePTCDI on KCl at +100 ◦C [51].

Thus, both molecular and CT transition dipoles lie approx-
imately parallel to the substrate plane, and the peak intensi-
ties F̃ β

p/s (cf. Table 1) derived from the polarized absorp-
tion spectra can be directly related to the model transition
dipoles from equation (34). After collecting all multiplica-
tive constants in F0 := mN2N/(e2h̄2) · p2

ME, the model in-
tensities according to (34) are given by six unknown model
parameters: ∆0

F, ∆CT, M , |ε+|, prel
CT, and F0. In order to

see if the experimental results can be reasonably described
by an appropriate parameter set, we considered all these pa-
rameters as fitting parameters. With an optimization routine
that minimizes the weighted deviations for peak positions, in-
tensities and polarization ratios, the best description of the
physical situation is obtained with the following model pa-
rameters: ∆0

F = 2.23 eV, ∆CT = 2.15 eV, M = 0.11 eV,
|ε+| = 0.10 eV, prel

CT = 0.26, and F0 = 0.40. The peak po-
sitions and intensities that follow from these parameters are
compared to the experimental values in Table 1. A graphic
comparison between model fit and experiment is shown in
Fig. 4 for the peak positions and polarization ratios Rβ , which
are the physically most relevant values.

The first three peaks are in good agreement with the exper-
imental spectra. Especially, the relatively small polarization
ratio of the second peak at 2.26 eV is well described. This
peak is most strongly affected by the CT exciton. Only for the
fourth peak at 2.72 eV, model and experiment deviate consid-
erably. This discrepancy is not surprising since already the
peak analysis of the spectra has shown that several transitions
contribute to this part of the spectrum. Here we reach the lim-
its of our simple four-band model: In reality, the very closely
spaced vibronic modes of the isolated molecule, which are
treated as one effective mode in the monomer spectrum, will
spread over a wider energy range as a result of Frenkel ex-
citon transfer. Furthermore, this higher energy region will be
affected by the so far neglected vibronic replicas of the CT ex-
citon. This explains why the experimental polarization ratio of
the fourth peak is much lower than the model prediction.

The model parameters obtained from the fit represent quali-
tatively the same scenario as derived from the quantum chem-
ical calculations (see Appendix). Especially the parameter for
the Frenkel-CTE-mixing |ε+| = 0.10 eV agrees reasonably
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FIG. 4: Comparison of experimental polarized absorption spec-
tra of MePTCDI with the exciton model. The polarization ratios
(from the peak analysis) also indicate the peak positions for the p-
direction. The s-polarized spectrum is scaled for easier comparison;
the Davydov-splitting is most clearly seen for the lowest peak. The
model predicts similar peak positions and for the lowest three states
comparable polarization ratios.

well with the quantum chemical result of 0.16 eV, and a high
contribution of the CTE-transition dipole (prel

CT = 0.27) is also
supported by the quantum chemical result of 0.19. Since tran-
sition dipoles scale with the orbital overlap, the large value
of prel

CT = 0.27 nevertheless seems an overestimation due to
the global fit. An improved model with all vibronic states and
without approximation (14) might give a better description of
the oscillator strengths with a different value of prel

CT. The
obtained Frenkel exciton transfer constant M = 0.11 eV is
also reasonable: Using the point-dipole approximation for the
molecular transition dipole p1 = 6.8 Debye (from the solution
spectrum) and neglecting dielectric screening, a transfer inte-
gral of Mvac = 0.41 eV is obtained. The difference between
M and Mvac corresponds to an effective dielectric screening
constant at this frequency of εeff = 3.7. This seems very
plausible compared to the dielectric constant of 4.1 from [53],
which was determined for (102) plane polarization of PTCDA
at 1.16 eV, i.e. below the considered exciton transition.

Interestingly, the model fit yields an energetic position of
the localized CTE below the molecular excitation (∆CT <
∆0

F). Thus, the nature of the lowest absorption peak is essen-
tially of charge-transfer parentage. Such a result is counter-
intuitive for one-component molecular crystals: In a sim-
ple picture, the transition from the Frenkel exciton to the
CTE means a charge separation, which requires energy. This
picture, however, is misleading if the separation between
the molecules (e.g. 3.4 Å between the molecular planes in
MePTCDI) becomes smaller than the size of the conjugated
system (e.g. N-N′-distance in MePTCDI: 11.3 Å). In this
case, there is no simple way to consider the molecular ex-
citation as an electron-hole pair with a separation smaller than
for the CTE. Further effects arise from the strong polarizabil-
ity of the surrounding crystal. Therefore, there is no general
rule concerning the relative positions of molecular and charge-
transfer excitations [7, 54]. A CTE position above the molec-
ular excitation is suggested in [17] (from a fit of the PTCDA

absorption spectra) and in [55] (from calculations of the abso-
lute CT energies). The same follows from our quantum chem-
ical calculations, but these are certainly not accurate enough.
Since the assignment of the CTE in our model fit also de-
pends on the simplified description of the higher energy re-
gion, a definite conclusion can not be drawn yet. However,
this does not affect the central message of a strong mixing be-
tween Frenkel and CT states due to their energetic proximity.

Only quantum chemistry can provide the parameter ε−,
which is not accessible from absorption experiments. With
ε−, the full momentum dependent band structure for the exci-
tons can be calculated. In order to give a qualitative picture,
we scaled ε± from the quantum chemical calculations so that
ε+ corresponds to the model fit: |ε−| = 0.29|ε+|. The re-
sulting band structure is shown in Fig. 5b. There, the com-
position of the bands is also indicated by a schematic visu-
alization of the k-dependent values |Uβ(k)|2 from (28) and
|cβ(k)|2 defined by (24). |Uβ(k)|2 represents the total frac-
tion of all Frenkel states weighted by their contributing transi-
tion dipoles, whereas |cβ(k)|2 directly gives the contribution
of the CT exciton. The Γ-point (k = 0) of this band struc-
ture represents the states accessible by optical absorption. For
easy comparison, in Fig. 5a the absorption spectrum is shown
again at the same energy scale. The upper shaded stripe at
each band representing |Uβ(k=0)|2 gives the main part of the
oscillator strength. The lower shaded stripes show the coeffi-
cients |cβ(k=0)|2 of the charge-transfer exciton, which have to
be multiplied by the factor |prel

CT|2 = 0.07 to get the contribut-
ing CTE oscillator strength (cf. (32)).

Since the bottom of the proposed band structure lies at the
edge of the Brillouin zone, luminescence is expected to ap-
pear as a weak, indirect transition from these k = π states (as
also discussed in [17]). In Fig. 5c, we show an experimental
transient emission spectrum (time window 0 − 40 ps) after a
short pulse excitation at 2.77 eV. Interestingly, the bottom of
the proposed band structure coincides with a small emission
feature at 2.10 eV, which has a short lifetime below the time
resolution of ≈ 10 ps. All lower emission peaks have a multi-
exponential decay time on time scales in the order of 1 ns.
These features coincide with the typical cw emission spec-
trum (as for PTCDA in [17]). The long-lived states might be
identified with self-trapped excitons or emission from defects.
Thus, we suggest that the main emission as observed in cw-
luminescence spectra does not result directly from the bottom
of the band structure but occurs only after further relaxation
processes. For one-dimensional crystals, exciton self-trapping
is strongly expected [1]. Also, effective exciton migration to
lower lying defect states is very common in organic crystals
(as for example X-trap emission in anthracene [56]).

We emphasize that the proposed band structure results en-
tirely from the absorption fit and the quantum chemically cal-
culated parameter ε−. Our approach is different from the one
used for PTCDA in [17], where the bottom of the lowest exci-
ton band is fixed to the cw-emission spectrum. This explains
the smaller dispersion in our band structure (mainly expressed
by a smaller exciton transfer integral M = 0.11 eV instead of
0.18 eV). Still, the qualitative situation of a strong Frenkel-
CT-mixing in the lowest band is similar.
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FIG. 5: Scheme of the exciton band structure in MePTCDI. a) p-
polarized absorption spectrum at 5 K. b) Dispersion of the mixed ex-
citon bands Eβ(k), β = 1 . . . 4 (solid lines). The upper, dark shaded
stripes show the contribution of the Frenkel exciton states given by
|Uβ(k)|2. The lower, light shaded stripes show the contribution of
the charge-transfer exciton given by |cβ(k)|2. c) Transient emission
spectrum of a poly-crystalline MePTCDI film at 5 K (time window
0 − 40 ps after short pulse excitation, streak-camera measurement,
no correction for spectral instrument response). The highest peak at
about 2.1 eV has a live time < 10 ps, the two lower peaks decay
multi-exponentially on time scales of ≈ 1 ns.

So far, the observed polarization dependence has been in-
terpreted as a result of the mixing with the CT exciton. This
argumentation is only valid if mixing with higher, M-axis po-
larized molecular transitions can be excluded. We now give
an estimation for the importance of such mixing. For sim-
plification, we consider only two purely electronic molecular
transitions: the long axis polarized lowest molecular S0-S1

transition and the next highest, M-axis polarized S0-S2 transi-
tion. The mixing between the S1 and S2 states is determined
by the transfer integral M1−2 for excitation transfer from the
S1 state to the S2 state at the nearest-neighbor in the stack.
In point-dipole approximation without screening, we obtain
from the molecular transition dipoles p1 and p2: M1−2 =
0.04 eV. This value is considerably smaller than the ener-
getic difference between the exciton states created from S1

and S2, which can be estimated from the crystal spectra to be

∆E1−2 > 0.5 eV. Therefore, the two states mix only weakly
and the relative admixture of the S2-transition dipole to the S1-
dipole is in the order of prel

1−2 ≈ M1−2/∆E1−2·p2/p1 < 0.02.
This estimate is a rough upper limit, which would be fur-

ther reduced if the lower vibronic S1 bands, more accurate
transition dipoles and especially screening effects in the point-
dipole approximation were considered. Nevertheless, prel

1−2 is
already an order of magnitude smaller then the assumed con-
tribution of the CTE transition dipole prel

CT. For higher molec-
ular states polarized along the molecular M-axis, the energetic
separation would be much larger and the mixing with the S1

state even smaller. Therefore, the observed components ~pCT

in the exciton states can not be caused by mixing with higher
intramolecular configurations but must be due to the mixing
with CT excitons.

Finally, we want to consider the additional effects due to
Davydov splitting. A splitting of the peak-positions for the
two polarization directions is qualitatively seen already in
Fig. 4; the values derived from the peak analysis are given
in Table 1. Since the shift of the peak positions due to this
splitting is small compared to the accuracy of our model, the
interaction between stacks and the distinction between co-
herent or incoherent inter-stack coupling was not important
for our one-dimensional model. In order to calculate the
three-dimensional exciton states with consideration of inter-
stack coupling, three-dimensional interaction sums would be
needed. Anisotropic screening effects would introduce sev-
eral unknown parameters. Therefore, we give only a very
simplified estimation: First, we neglect the contribution of
CTE since it is a relatively small correction to the effective
transition dipole of each exciton band. Second, we treat all
interactions in point-dipole approximation. Third, we con-
sider the screening effects by dividing all point-dipole inter-
actions by one effective dielectric constant εeff . For this, we
use the value εeff = 3.7, which was obtained from the screen-
ing for the nearest-neighbor interaction within the 1D-stacks.
Fourth, we neglect interactions between the various exciton
bands. Then, the Davydov splitting ∆Eβ for each band can
be calculated as in the standard three-dimensional two-level
exciton problem ([38], p. 44) for two non-equivalent molecu-
lar transition dipoles Uβ~pME(A/B). Here, the factor Uβ(k=0)

describes how the electronic molecular transition dipole is dis-
tributed over the four exciton bands. For directions of ~k in the
a-c-plane of the crystal or perpendicular to it, the Davydov
splitting is then given by

∆Eβ = lim
~k→0

∑

~n

′
M0B,~nAei~k~n, (42)

where M0B,~nA is the point-dipole interaction between a dipole
Uβ~pME(B) in the unit cell 0 and a dipole Uβ~pME(A) in the
unit cell ~n of the three-dimensional crystal.

The sum in (42) can be carried out directly for a small num-
ber of interactions or has to be evaluated by the Ewald method
([57], p. 248) for considering a macroscopic interaction vol-
ume. In both cases it reduces to

∆Eβ = Mβ
ABQAB(~k) , (43)
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where Mβ
AB is the interaction between molecules A and B in

the same unit cell and QAB(~k) is a lattice sum, which depends
only on the crystal structure. The convergence behavior of the
lattice sum is complicated and its limit for ~k → 0 depends on
the direction of ~k. For the crystal structure of MePTCDI, this
spatial dispersion is dramatic if we consider infinite interac-
tion sums calculated by the Ewald method: Then Q = +33.7

for ~k ‖ ~a ∗, Q = −25.7 for ~k ‖ ~b ∗ and Q = +34.1 for ~k ‖ ~c ∗

where ~a ∗,~b ∗,~c ∗ are the reciprocal lattice vectors (~a ∗ along
the stacking direction). If we carry out the sum (42) only for
small interaction volumes and a small |~k| corresponding to
the momentum of the exciting light, we obtain values which
do not depend critically on the direction of ~k or the radius
of summation: For all three directions and summation ranges
between 3 and 20 lattice constants, the values of Q differ by
less then 2.7%. We will use the value of Q = +27.0, which
represents a summation range of three lattice constants and
~k ‖ ~a ∗. This value is already close to the Ewald limit and
represents approximately the experimental ~k direction. The
obtained values for ∆Eβ are compared to the experimental
results in Table 1. Their order of magnitude and the general
trends agree well. We conclude that the observed splitting of
the peak positions is indeed the result of Davydov splitting
caused by coherent coupling of the one-dimensional exciton
states.

For PTCDA, the application of our model is much less reli-
able. We could not obtain samples that show polarized absorp-
tion spectra. This difficulty is not surprising since in PTCDA
the two non-equivalent molecules in PTCDA make a large an-
gle of ϕ = 82◦, so that the crystal itself is less anisotropic
than in the case of MePTCDI. Furthermore, the peaks in the
absorption spectra (Fig. 2) are not as well separated. The
evaluation of M depends strongly on the resolved peak struc-
ture, and prel

CT on the polarization dependence. Therefore, we
used for both the values from MePTCDI. Point-dipole approx-
imation (for M ) and quantum chemistry (for M and prel

CT)
suggest similar values for both materials. The fitting pro-
cedure yields for the remaining parameters ∆0

F = 2.34 eV,
∆CT = 2.27 eV, |ε+| = 0.10, eV, and F0 = 0.37. With
|ε−| = 0.79|ε+| from the quantum chemical analysis for
PTCDA, we obtain the exciton band structure shown in Fig. 6.
The qualitative physical picture is very similar to the case of
MePTCDI.

VI. CONCLUSION

We presented a model Hamiltonian which includes several
vibronic Frenkel and one nearest-neighbor CT exciton and is
capable of describing energetic positions, peak intensities and
polarization directions of a one-dimensional crystal. In crys-
tals containing only one type of molecules, CT excitons are
usually considered to have a very small intrinsic oscillator
strength. Therefore, electro-absorption measurements are re-
garded as the most appropriate tool for their direct observation
[8]. We demonstrate that in quasi-1D crystals with strong or-
bital overlap the CT excitons can have a considerable intrinsic
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FIG. 6: Scheme of the exciton band structure in PTCDA. a) Ab-
sorption spectrum at 5 K. b) Dispersion of the exciton bands (cf.
Fig. 5b). c) Transient emission spectrum of a poly-crystalline
PTCDA film at 5 K (time window 0 − 40 ps after short pulse ex-
citation, streak-camera measurement, no correction for spectral in-
strument response).

transition dipole moment, which influences the polarization
direction of the mixed exciton. In a three-dimensional crys-
tal with two molecules per unit cell and weak coupling be-
tween the one-dimensional stacks, the CTE transition dipole
affects the observable polarization ratio. This mechanism
is discussed as a direct, qualitative proof for the mixing of
Frenkel and CT excitons in MePTCDI independent of electro-
absorption measurements.

Our model has been applied to polarized absorption spec-
tra of the perylene derivative MePTCDI. Using a fitting pro-
cedure, a set of six model parameters ∆0

F, ∆CT, M , |ε+|,
prel
CT, and F0 was obtained to describe the 12 independent ex-

perimental values for the peak positions and intensities. The
model fit can qualitatively explain all features of the absorp-
tion spectra. Because of the simplifications and the arbitrary
weighting factors in the fit, the obtained parameters can not
be considered as quantitative. However, we have shown that
our model is capable of representing qualitatively the physical
situation in the considered organic crystal. From a simplified
analysis we find a similar picture for PTCDA. The order of
magnitude of the proposed model parameters is confirmed by
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a quantum chemical analysis.
As discussed in the introduction, the small radius exciton

model applied here is only justified if the nearest-neighbor
CT exciton is energetically well separated from higher energy
CTE and especially from the free charge carrier bands. The
binding energy of the lowest CTE in the stack is ≈ 1.9 eV and
the next highest CTE lies already ≈ 0.7 eV higher [58]. This
energetic separation is clearly larger than the charge transfer
integrals included in ε+(MePTCDI) = 0.1 eV, and the cor-
responding combined bandwidth for electrons and holes of
0.4 eV is also smaller than the binding energy of the lowest
CTE. Therefore, the necessary conditions for a small radius
exciton model which includes only the (electronically) lowest
Frenkel and CT states are fulfilled.
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APPENDIX A: QUANTUM CHEMICAL CALCULATION OF
CT TRANSITION DIPOLE MOMENTS

Here, we give a qualitative picture for the expected di-
rection of the charge transfer transition dipole ~pCT and a
schematic description of our quantum chemical calculations.
Since we want to consider only nearest-neighbor CT states in
the 1D-stacks, it is sufficient to know the properties of a dimer
which has the same geometry as in the crystal. In order to give
a conceptually simple picture, we discuss the quantum chemi-
cal description in terms of a semi-empirical Hartree-Fock cal-
culation for the valence electrons and singly excited configu-
rations (HF+CIS).

In an isolated MePTCDI-like molecule, the HOMO (H)
is energetically well separated from lower lying molecular
orbitals, and similarly, the LUMO (L) lies well below the
next higher orbitals. Therefore, the lowest excited singlet
state results from an almost pure HOMO-LUMO transition
(compare [29] and our results below). Then, the excited
states of the weakly interacting van-der-Waals dimer AB can
be constructed out of (i) molecular excitations at A and B:
|MEA〉 = |HA → LA〉 and |MEB〉 = |HB → LB〉, and (ii)
CT excitations: |CTA→B〉 = |HA → LB〉 and |CTB→A〉 =
|HB → LA〉. From this, a symmetry adapted basis set can be
formed consisting of Frenkel excitons

|FE±〉 =
1√
2
( |MEA〉 ± |MEB〉 ) (A1)

and delocalized CT excitons

|CT±〉 =
1√
2
( |CTA→B〉 ± |CTB→A〉 ) . (A2)

The transition dipole moment ~pCT = 〈CT+| ~̂p |0〉 of the
symmetrical CT state is given by ~pCT = 2e

∫
%AB~r dV ,

where %AB(~r ) = HA(~r )LB(~r ) is the transition density be-
tween HA and LB.

Mulliken et al. described the behavior of such transi-
tion dipole matrix elements for a CT transition |CTD→A〉 in
donor-acceptor complexes ([59], p.28f and [60]). In this case,
the transition density is typically discussed for a σ-type over-
lap, in which %DA(~r ) forms a small cloud without nodes and
is localized between the two molecules. Then, the CT transi-
tion dipole can be visualized as the transfer of an electron from
the donor D to the center between D and A. The direction of
~pCT is along the connection line. In our case of co-facially
stacked aromatic molecules, %AB is formed by large and com-
plicated π-orbitals. Although %AB is still located between the
molecules, it is not concentrated in a small volume but forms
a flat, quasi-two dimensional cloud with dimensions of the
molecular size. Furthermore, like the contributing monomer
orbitals, it now has a complicated node structure with alter-
nating sign. Therefore, the transition dipole ~pCT cannot be
estimated by simple geometrical considerations anymore. It
is only clear that, very much in contrast to the Mulliken pic-
ture, ~pCT should lie approximately parallel to the molecular
planes and not along the connection line. A strong transition
dipole along this connection line is only caused by an asym-
metry like in the donor-acceptor situation.

For actual calculations we used the semi-empirical
ZINDO/S module of HyperChem 5.01 (Hypercube, Inc., Wa-
terloo, Canada). We employed standard parameters and the
weighting factors for the orbital overlap Fσ = 1.267 and
Fπ = 0.585 [61]. The atomic positions were taken from the
geometry in the crystal structure (MePTCDI: [30], PTCDA:
[13–16]). From the Hartree-Fock calculation of a monomer,
the localized HF-orbitals HA,B and LA,B were obtained. For
the calculation of the dimer, two approaches are generally pos-
sible: (i) Construction of dimer states from the monomer HF-
orbitals as in (A1) and (A2) or (ii) HF+CIS calculation of the
complete dimer and subsequent projection onto Frenkel and
CT states (supermolecular approach). We used the second ap-
proach since a dimer calculation can be directly carried out
by standard software. Our projection is similar to the anal-
ysis of phthalocyanine dimers in [62]. After calculating the
dimer, we projected the two highest occupied dimer orbitals
onto H± = 1/

√
2(HA ± HB) and the two lowest unoccu-

pied dimer orbitals onto L± = 1/
√

2(LA ± LB). Using this
projection, all results of CIS calculations (10 occupied and 12
unoccupied dimer orbitals) were expressed with the orbitals
H± and L±. The four lowest excited singlet states are mainly
constructed from these H± and L± orbitals. That means, that
the lowest states from a full dimer calculation can indeed be
well described by the four Frenkel and CT configurations (A1)
and (A2). The contribution of other configurations (sum of
squared CI-coefficients) is less then 10% for MePTCDI or
17% for PTCDA.

Since only states of the same symmetry mix, there are two
dipole allowed singlets Sg

1,2 and two dipole forbidden ones
Su

1,2 represented by linear combinations of either symmetrical
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or antisymmetrical Frenkel and CT states:

|Sg
1,2〉 = αg

1,2|FE+〉 + βg
1,2|CT+〉 (A3)

|Su
1,2〉 = αu

1,2|FE−〉 + βu
1,2|CT−〉 (A4)

From the coefficients in this representation, the desired tran-
sition dipoles ~pFE = 〈FE+|e~r |0〉 and especially ~pCT =
〈CT+|e~r |0〉 can finally be expressed through the directly cal-
culated transition dipoles of the singlets |Sg

1,2〉.
The actual calculations confirm the qualitative expecta-

tions: ~pFE points along the long molecular axis and ~pCT

makes a small angle with the molecular plane (MePTCDI:
20.4◦, PTCDA: 26.1◦). The CT transition dipole is much
smaller but still considerable compared to the molecular tran-
sition dipole. The relative size prel

CT := pCT/pME is ob-
tained as prel

CT = 0.19 for MePTCDI and prel
CT = 0.14 for

PTCDA. The angle γ between the CT transition dipole com-
ponent within the molecular plane and the long molecular axis
is γ = 68.1◦ for MePTCDI and γ = 143.7◦ for PTCDA, i.e,
in particular in MePTCDI the CT transition dipole has a large
component along the molecular M-axis.

Furthermore, all electronic parameters used in the 1D-
Hamiltonian (1) can be derived from the decomposition (A3)
and (A4). The final results are for MePTCDI: ∆F = 2.89 eV,
∆CT = 3.09 eV, M = 0.20 eV, |ε+| = 0.16 eV, |ε−| =
0.05 eV; and for PTCDA: ∆F = 2.86 eV, ∆CT = 3.05 eV,
M = 0.19 eV, |ε+| = 0.05 eV, |ε−| = 0.04 eV. These nu-
merical values have to be considered as rough estimates just
on the level of the used quantum chemical method. ZINDO/S
and similar methods use atomic orbitals and semi-empirical
parameters that are optimized for the conditions of bound
atoms within a molecule. The situation between two unbound
molecules may be very poorly characterized. For this reason,
and also because any crystal environment is neglected, the de-
termined interaction integrals M , ε± and also the energy dif-
ference ∆CT−∆F may differ considerably from the values in
the real crystal. In contrast, the geometric arrangement of the
orbitals and thereby the direction of the transition moments
should be only weakly sensitive to the level of approximation.
The general trend of strong mixing between Frenkel and CT
states agrees with quantum chemical studies on dimers with
comparable π-electron overlap, e.g. on phthalocyanines [62]
or polyenes [63].
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[12] G. Klebe, F. Graser, E. H ädicke, J. Berndt, Acta Cryst. B45

(1989) 69.
[13] A.J. Lovinger, S.R. Forrest, M.L. Kaplan, P.H. Schmidt, T.

Venkatesan, J. Appl. Phys. 55 (1984) 476.
[14] A.J. Lovinger, S.R. Forrest, M.L. Kaplan, P.H. Schmidt, T.

Venkatesan, Bull. Am. Phys. Soc. 28 (1983) 363.
[15] A.J. Lovinger, S.R. Forrest, M.L. Kaplan, P.H. Schmidt, T.

Venkatesan, Bull. Am. Phys. Soc. 28 (1983) 476.
[16] M.L. Kaplan, C.S. Day, A.J. Lovinger, P.H. Schmidt, S.R. For-

rest, full set of crystal structure data, private communication
1994.

[17] M.H. Hennessy, Z.G. Soos, R.A. Pascal Jr., A. Girlando, Chem.
Phys. 245 (1999) 199.

[18] M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agra-
novich, K. Leo, in F. Kajzar, V.M. Agranovich (Eds.), Multi-
photon and Light Driven Multielectron Processes: Materials,
Phenomena, Applications, Kluwer, Dordrecht, 2000, p. 123.
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